
Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Morphology parsing
Grundläggande textanalys: Lecture 3

Course given by
Marie Dubremetz

marie.dubremetz@lingfil.uu.se

At:
Uppsala University

Department of Linguistic and Philology
Acknowledgement to:
School of Informatics

University of Edinburgh

April 2015

1 / 25

marie.dubremetz@lingfil.uu.se

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Sources

These slides (from slide 3 to slide 18), slightly modified, are
borrowed from John Longley from the school of Informatics
(University of Edinburgh) with his kind authorization.

2 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

1 Morphology parsing: the problem

2 FSTs for morphology parsing and generation

(This lecture is taken almost directly from Jurafsky and Martin
[2009] chapter 3, sections 1–7.)

3 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Which pre-processing today?

The steps of pre-pocessing (can) include:

Normalization of encoding, format etc.

Cleaning

Word normalization (language variations, sms etc.)

Tokenization and sentence segmentation [cf previous course]

Lemmatization and Morpho-analysis ⇐
Stemming ⇐
Parsing

[⇐ Today’s class]

4 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Morphological parsing: the problem

In many languages, words can be made up of a main lemma
(carrying the basic dictionary meaning) plus one or more affixes
carrying grammatical information. E.g. in English:

Surface form: cats walking flickor [in Swedish]
Lexical form: cat+N+PL walk+V+PresPart flicka+Undef+PL

Morphological parsing is the problem of extracting the lexical form
from the surface form.

Should take account of:

Irregular forms (e.g. goose → geese)

Systematic rules (e.g. ‘e’ inserted before suffix ‘s’ after
s,x,z,ch,sh: fox → foxes, watch → watches)

5 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Why bother?

NLP tasks involving meaning extraction will often involve
morphology parsing.

Even a humble task like spell checking can benefit: e.g. is
‘walking’ a possible word form?

But why not just list all derived forms separately in our wordlist
(e.g. walk, walks, walked, walking)?

Might be OK for English, but not for a morphologically rich
language — e.g. in Turkish, can pile up to 10 suffixes on a
verb stem, leading to 40,000 possible forms for some verbs!

Even for English, morphological parsing makes adding new
words easier (e.g. ‘tweet’).

Morphology parsing is just more interesting than brute listing!

6 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Parsing and generation

Parsing here means going from the surface to the lexical form.
E.g. foxes → fox +N +PL.

Generation is the opposite process: fox +N +PL → foxes. It’s
helpful to consider these two processes together.

Either way, it’s often useful to proceed via an intermediate form,
corresponding to an analysis in terms of morphemes (= minimal
meaningful units) before orthographic rules are applied.

Surface form: foxes
Intermediate form: fox ˆ s #
Lexical form: fox +N +PL

(̂ means morpheme boundary, # means word boundary.)

N.B. The translation between surface and intermediate form is
exactly the same if ‘foxes’ is a 3rd person singular verb!

7 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Finite-state transducer (Etymology)

Finite: an FST ”finite” because it has a finite number of states
and a limited memory. Note: Finite number of states does not
mean finite number of possible input strings!
State: an FST is a machine constituted of states and transitions.
Its behaviour is lead by a word given as an input: the transducer
transits from a state to another by following defined transitions
each time it reads a new letter.
Transducer: from the latin trans- ’across’ + ducere ’lead’. The
transducer is literally the machine that leads the
transition/transformation of an input string into another string.

8 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Finite-state transducers

We can consider ε-NFAs (over an alphabet Σ) in which transitions
may also (optionally) produce output symbols (over a possibly
different alphabet Π).

E.g. consider the following machine with input alphabet {a, b} and
output alphabet {0, 1}:

a:0 a:1

b: ε

b: ε

Such a thing is called a finite state transducer.
In effect, it specifies a (possibly multi-valued) translation from one
regular language to another.

9 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Clicker exercise

a:0 a:1

b: ε

b: ε

What output will this produce, given the input aabaaabbab?

1 001110

2 001111

3 0011101

4 More than one output is possible.

10 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Formal definition

Formally, a finite state transducer T with inputs from Σ and
outputs from Π consists of:

sets Q, S , F as in ordinary NFAs,

a transition relation ∆ ⊆ Q × (Σ∪{ε})× (Π∪{ε})× Q

Example of transition relation:
(q1,a,b,q2),(q2,c,d,q3)

From T as above, we can obtain another transducer T just by
swapping the roles of inputs and outputs.

11 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Stage 1: From lexical to intermediate form

Consider the problem of translating a lexical form like ‘fox+N+PL’
into an intermediate form like ‘fox ˆ s # ’, taking account of
irregular forms like goose/geese.

We can do this with a transducer of the following schematic form:

+N: ε

+N: ε

+N: ε

regular noun
(copied to output)

(copied to output)

irregular noun

irregular noun
(replaced by plural)

+PL : ^s#

+SG : #

+SG : #

+PL : #

We treat each of +N, +SG, +PL as a single symbol.
The ‘transition’ labelled +PL : ŝ# abbreviates three transitions:
+PL : ,̂ ε : s, ε : #. 12 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

The Stage 1 transducer fleshed out

The left hand part of the preceding diagram is an abbreviation for
something like this (only a small sample shown):

o:e

o:e

e

g o o s e

s

f

c
a

t

o x

Here, for simplicity, a single label u abbreviates u : u.

13 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Stage 2: From intermediate to surface form

To convert a sequence of morphemes to surface form, we apply a
number of orthographic rules such as the following.

E-insertion: Insert e after s,z,x,ch,sh before a word-final
morpheme -s. (fox → foxes)

E-deletion: Delete e before a suffix beginning with e,i.
(love → loving)

Consonant doubling: Single consonants b,s,g,k,l,m,n,p,r,s,t,v
are doubled before suffix -ed or -ing. (beg → begged)

We shall consider a simplified form of E-insertion, ignoring ch,sh.

(Note that this rule is oblivious to whether -s is a plural noun suffix
or a 3rd person verb suffix.)

14 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

A transducer for E-insertion (adapted from J+M)

^: ε
^: ε

^: ε

?

z,s,x
s

z,x

:eε s
1 4

5

2 3

#

0 0’

?

?

?

?

#

z,s,x
z,s,x

Here ? may stand for any symbol except z,s,x,̂ ,#.
(Treat # as a ‘visible space character’.)

At a morpheme boundary following z,s,x, we arrive in State 2.
If the ensuing input sequence is s#, our only option is to go via
states 3 and 4. Note that there’s no #-transition out of State 5.

State 5 allows e.g. ‘ex̂ servicê men#’ to be translated to
‘exservicemen’.

15 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Putting it all together

FSTs can be cascaded: output from one can be input to another.

To go from lexical to surface form, use ‘Stage 1’ transducer
followed by a bunch of orthographic rule transducers like the above.

The results of this generation process are typically deterministic
(each lexical form gives a unique surface form), even though our
transducers make use of non-determinism along the way.

Running the same cascade backwards lets us do parsing (surface to
lexical form). Because of ambiguity, this process is frequently
non-deterministic: e.g. ‘foxes’ might be analysed as fox+N+PL or
fox+V+Pres+3SG.

Such ambiguities are not resolved by morphological parsing itself:
left to a later processing stage.

16 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Clicker exercise 2

^: ε
^: ε

^: ε

?

z,s,x
s

z,x

:eε s
1 4

5

2 3

#

0 0’

?

?

?

?

#

z,s,x
z,s,x

Apply this backwards to translate from surface to int. form.

Starting from state 0, how many sequences of transitions are
compatible with the input string ‘asses’ ?

1 1
2 2
3 3
4 4
5 More than 4

17 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Solution

^: ε
^: ε

^: ε

?

z,s,x
s

z,x

:eε s
1 4

5

2 3

#

0 0’

?

?

?

?

#

z,s,x
z,s,x

On the input string ‘asses’, 10 transition sequences are possible!

0
a→ 0′ s→ 1

s→ 1
ε→ 2

e→ 3
s→ 4, output asŝ s

0
a→ 0′ s→ 1

s→ 1
ε→ 2

e→ 0′ s→ 1, output asŝ es

0
a→ 0′ s→ 1

s→ 1
e→ 0′ s→ 1, output asses

0
a→ 0′ s→ 1

ε→ 2
s→ 5

ε→ 2
e→ 3

s→ 4, output aŝ ŝ s

0
a→ 0′ s→ 1

ε→ 2
s→ 5

ε→ 2
e→ 0′ s→ 1, output aŝ ŝ es

0
a→ 0′ s→ 1

ε→ 2
s→ 5

e→ 0′ s→ 1, output aŝ ses

Four of these can also be followed by 1
ε→ 2 (output)̂. 18 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Exercise

In the next slide you will see a problem and 4 transducers that are
supposed to solve it. Only 2 transducers correctly answer this
problem. Can you find them?

19 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Exercise

Transducer 1 Transducer 2

Transducer 3 Transducer 4

20 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Lexicon-Free FSTs: The Porter Stemmer

Imagine a list of documents that contain the words ”dances”,
”dance”, ”danced”
And a user looking for a document about ”dancing”.
If we do not apply any transformation to those words the machine
cannot match them together.
Before the 80’s we used lexicons: heavy, hard to develop.

Until came the Porter algorithm:

Porter [1980]

21 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Lexicon-Free FSTs: The Porter Stemmer

Imagine a list of documents that contain the words ”dances”,
”dance”, ”danced”
And a user looking for a document about ”dancing”.
If we do not apply any transformation to those words the machine
cannot match them together.
Before the 80’s we used lexicons: heavy, hard to develop.
Until came the Porter algorithm:

Porter [1980]

21 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Lexicon-Free FSTs: The Porter Stemmer

The most famous stemmer algorithm is the Porter algorithm Like
morpho-analyzers, stemmers can be seen as cascaded transducers
but it has no lexicon.

22 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Porter algorithm example

For words like: falling, attaching, sing, hopping etc.
Step 1:

1 If the word has more than one syllab and end with ‘ing’:

2 I Remove ’ing’ and apply the second step

Step 2:

1 If word finishes by a double consonant (except L S Z):

2 I Transform it into a single letter

falling → fall
attaching → attach
sing → sing
hopping → hop

23 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Porter algorithm example

For words like: falling, attaching, sing, hopping etc.
Step 1:

1 If the word has more than one syllab and end with ‘ing’:

2 I Remove ’ing’ and apply the second step

Step 2:

1 If word finishes by a double consonant (except L S Z):

2 I Transform it into a single letter

falling → fall
attaching → attach
sing → sing
hopping → hop

23 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

Porter algorithm limits and advantages

Will be wrong on irregularities:
something → someth
But:

Very simple algorithm

Useful for IR

24 / 25

Morphology parsing: the problem
FSTs for morphology parsing and generation

References

References

Daniel Jurafsky and James H Martin. Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition, volume 163
of Prentice Hall Series in Artificial Intelligence. Prentice Hall,
2009.

Martin F. Porter. An Algorithm for Suffix Stripping Program. 1980.
Chapter 3 for the second edition.

Problem with automaton?
Read chapter 2.
Play with this:
http://automatonsimulator.com/

25 / 25

http://automatonsimulator.com/

	Morphology parsing: the problem
	FSTs for morphology parsing and generation

