Basic Text Analysis

Part-of-Speech Tagging

Parts of Speech

8–10 traditional parts of speech

 Noun, verb, adjective, adverb, preposition, article, interjection, pronoun, conjunction, ...

Variously called:

- Parts of speech, lexical categories, word classes, morphological classes, lexical tags, ...
- Lots of debate within linguistics about the number, nature, and universality of these
 - We'll completely ignore this debate

POS Examples

- N noun *chair, bandwidth, pacing*
- V verb *study, debate, munch*
- ADJ adjective *purple, tall, ridiculous*
- ADV adverb unfortunately, slowly
- P preposition of, by, to
- DET determiner *the, a, that, those*
- INT interjection *ouch, hey*
- PRO pronoun *I, me, mine*
- CONJ conjunction and, but, for, because

POS Tagging

 The process of assigning a part-of-speech tag to every word of a sentence/text

WORD	TAG
the	DET
koala	Ν
put	V
the	DET
keys	Ν
on	Ρ
the	DET
table	Ν

Why is POS Tagging Useful?

First step of a vast number of practical tasks

Speech synthesis

- How to pronounce "lead"?
- INsult inSULT
- OBject obJECT
- OVERflow overFLOW
- DIScount disCOUNT
- CONtent conTENT

Parsing

Need to know if a word is an N or V before you can parse

Information extraction

- Finding names, relations, etc.
- Machine translation

Why is PoS Tagging Hard?

Lexical ambiguity:

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/ IN outer/JJ space/NN
- Unknown words:
 - The/DT rural/JJ Babbitt/??? who/WP bloviates/??? about/IN progress/NN and/CC growth/NN

How is it Done?

Two sources of information

- Lexical information (the word itself)
 - Known words can be looked up in a lexicon listing possible tags for each word
 - Unknown words can be analyzed with respect to affixes, capitalization, special symbols, etc.
- Contextual information (surrounding words)
 - A language model can rank tags in context
- Two main approaches
 - Rule-based systems
 - Statistical systems

POS Tagging Choosing a Tagset

- There are so many potential distinctions we can draw
- To do POS tagging, we need to choose a standard set of tags to work with
- Could pick very coarse tagsets
 - N, V, Adj, Adv, ...
- More commonly used sets are finer grained
 - English: Penn Treebank tagset, 45 tags
 - Swedish: SUC tagset, 25 base tags + features ≈ 150 tags
- Even more fine-grained tagsets exist

Open and Closed Classes

- Closed class: a small fixed membership
 - Prepositions: of, in, by, ...
 - Pronouns: I, you, she, mine, his, this, that, ...
 - Determiners: the, a, this, that, ...
 - Usually function words
 - Often frequent and ambiguous
- Open class: new ones can be created all the time
 - English has 4: Nouns, Verbs, Adjectives, Adverbs
 - Many languages have these 4, but not all!
 - Usually content words
 - Often rare and (therefore sometimes) unknown

Penn TreeBank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis	$],), \}, >$
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	. ! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off		_	

How Hard is POS Tagging? Measuring Ambiguity

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2–7 tags)		5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

The SUC POS Tagset

AB	Adverb	inte
DT	Determinerare	denna
HA	Frågande/relativt adverb	när
HD	Frågande/relativ determinerare	vilken
HP	Frågande/relativt pronomen	som
HS	Frågande/relativt possessivt pronomen	vars
IE	Infinitivmärke	att
IN	Interjektion	ja
JJ	Adjektiv	glad
KN	Konjunktion	och
NN	Substantiv	pudding
PC	Particip	utsänd
PL	Partikel	ut
PM	Egennamn	Mats
PN	Pronomen	hon
PP	Preposition	av
PS	Possessivt pronomen	hennes
RG	Grundtal	tre
RO	Ordningstal	tredje
SN	Subjunktion	att
UO	Utländskt ord	the
VB	Verb	kasta

The SUC POS Tagset

- The SUC tagset combines base tags with morphosyntactic features:
 - arenor NN UTR PLU IND NOM
 - arrogant JJ POS UTR SI
 - vinner VB PRS AKT
 - på PP
 - också AB
 - , MID
 - MAD
 - PAD

Feature	Value	Legend	Parts-of-speech where feature applies
Gender	UTR	Uter (common)	DT, HD, HP, JJ, NN, PC, PN, PS, (RG, RO)
	NEU	Neuter	
	MAS	Masculine	
Number	SIN	Singular	DT, HD, HP, JJ, NN, PC, PN, PS, (RG, RO)
	PLU	Plural	
Definiteness	IND	Indefinite	DT, (HD, HP, HS), JJ, NN, PC, PN, (PS, RG, RO)
	DEF	Definite	
Case	NOM	Nominative	JJ, NN, PC, PM, (RG, RO)
	GEN	Genitive	
Tense	PRS	Present	VB
	PRT	Preterite	
	SUP	Supinum	
	INF	Infinite	
Voice	AKT	Active	
	SFO	S-form (passive or deponential)	
Mood	KON	Subjunctive (Sw. konjunktiv)	
Participle	PRS	Present	PC
form			
	PRF	Perfect	
Degree	POS	Positive	(AB), JJ
	KOM	Comparative	
	SUV	Superlative	
Pronoun form	SUB	Subject form	PN
	OBJ	Object form	
	SMS	Compound (Sw. sammansättningsform)	All parts-of-speech

Evaluation

- So once you have you POS tagger running how do you evaluate it?
 - Overall error rate with respect to a manually annotated gold-standard test set
 - Error rates on known vs. unknown words
 - Error rates on particular tags
- Accuracy typically reaches 96–97% for English newswire text
 - What about Turkish?
 - What about twitter?

Error Analysis

Look at a confusion matrix

	IN	JJ	NN	NNP	RB	VBD	VBN
IN		.2			.7		
JJ	.2		3.3	2.1	1.7	.2	2.7
NN		8.7	—				.2
NNP	.2	3.3	4.1	—	.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5			—	4.4
VBN		2.8				2.6	

- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
 - Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Two Methods for POS Tagging

- 1. Rule-based systems
 - Constraint Grammar
 - Transformation-Based Learning
- 2. Statistical sequence models
 - Hidden Markov Models
 - Maximum Entropy Markov Models
 - Conditional Random Fields

Rule-Based Tagging

Constraint Grammar

- Assign all possible tags to each word
- Apply rules that discard tags based on context
- Rules created by hand
- Transformation-Based Learning
 - Assign most frequent tag to each word
 - Apply rules that replace tags based on context
 - Later rules may overwrite earlier rules
 - Rules learned from tagged corpus

Constraint Grammar

Pavlov N NOM SG PROPER had V PAST VFIN PCP2

Rule 2: Discard ADV before N

Rule 1: Discard PCP2 before PCP2

PRON DEM SG DET CENTRAL DEM SG CS N NOM SG

salivation

Constraint Grammar

Advantages:

- Can achieve very high recall with good lexical resources
- Rules can be interpreted by humans, which facilitates debugging

Drawbacks:

- Not always possible to eliminate all ambiguity
- Rules design is difficult and time-consuming

TBL Tagging

- Initial-state annotation:
 - Known words: most likely tag
 - Unknown words: NNP if capitalized, else NN
- Apply transformation rules in sequence:
 - Replace tag A with tag B in context C

TBL Learning

- Given a tagged training corpus:
 - Apply initial-state annotation
 - Repeat until no improvement:
 - Consider all possible transformation rules
 - Select rule with best score on training data
 - Add rule to the end of rule sequence
- Design decisions:
 - Rule templates
 - For example: n-word window of words/tags
 - Scoring function
 - For example: error reduction on training set

Top Rules Learnt for English

From To If

VB previous tag is TO NN to/TO conflict/NN \rightarrow NB VBP VB one of the previous 3 tags is MD might/MD vanish/VBP \rightarrow VB NN VB one of the previous two tags is MD might/MD not reply/NN $\rightarrow VB$ NN one of the previous two tags is DT VB the/DT amazing play/VB $\rightarrow NN$

TBL Evaluation

Advantages:

- Rules can be interpreted by humans, which facilitates debugging
- Rules are learnt automatically from data

Drawbacks:

- Not quite as accurate as the best models
- Slow to train on large data sets

Hidden Markov Model Tagging

- Using an HMM to do POS tagging is a special case of *Bayesian inference*
 - Given a sequence of tags:
 - Secretariat is expected to race tomorrow
 - What is the best sequence of tags?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Choose the most probable one given w₁...w_n

Getting to HMMs

 We want, out of all sequences of n tags t₁...t_n the single tag sequence such that P(t₁...t_n|w₁...w_n) is highest.

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- Hat ^ means "our estimate of the best one"
- Argmax_x f(x) means "the x such that f(x) is maximized"

Getting to HMMs

 This equation is guaranteed to give us the best tag sequence

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- But how to make it operational? How to compute this value?
- Strategy in Bayesian classification:
 - Use Bayes rule to break down the problem
 - Make appropriate independence assumptions

Using Bayes Rule

. .

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})}{P(w_{1}^{n})}$$

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and Prior

$$\widehat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} \begin{array}{l} \overbrace{P(w_{1}^{n}|t_{1}^{n})}^{\text{prior}} \\ \widehat{P(t_{1}^{n})}^{n} \end{array} \begin{array}{l} \overbrace{P(t_{1}^{n})}^{\text{prior}} \\ \widehat{P(t_{1}^{n})}^{n} \end{array}$$

$$P(w_{1}^{n}|t_{1}^{n}) \approx \prod_{i=1}^{n} P(w_{i}|t_{i})$$

п

 \hat{t}_1^n

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

= $\underset{t_1^n}{\operatorname{argmax}} P(t_1^n|w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i|t_i)P(t_i|t_{i-1})$

Two Kinds of Probabilities

- Tag transition probabilities p(t_i|t_{i-1})
 - Dets likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
 - But P(DT|JJ) to be low
 - We can estimate P(NN|DT) from tagged corpus:

$$P(NN|DT) = \frac{C(DT, NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

This is a bigram language model over tags!

Two Kinds of Probabilities

- Word likelihood probabilities p(w_i|t_i)
 - VBZ (3sg Pres verb) likely to be "is"
 - Estimate P(is|VBZ) from tagged corpus:

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Example: The Verb "race"

Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR

People/NNS continue/VB to/TO inquire/VB the/DT reason/ NN for/IN the/DT **race**/NN for/IN outer/JJ space/NN

How do we pick the right tag?

Disambiguating "race"

Example

P(NN|TO) = .00047 P(race|NN) = .00057 P(NR|NN) = .0012 P(VB|TO) = .83 P(race|VB) = .00012 P(NR|VB) = .0027

P(NN|TO) x P(NR|NN) x P(race|NN)=.0000000032

 $P(VB|TO) \times P(NR|VB) \times P(race|VB) = .00000027$

So we (correctly) choose the verb reading!

Hidden Markov Models

 What we have described is a (first-order) Hidden Markov Model

More Formally

- Alphabet $\Sigma = \{ s_1, s_2, ..., s_M \}$
- Set of states $Q = \{ q_1, q_2, ..., q_M \}$
- Transition probabilities between any two states
 a_{ij} = P(q_j | q_i) = transition prob from state i to state j
- Start probabilities for any state $\pi_{0i} = P(q_i) = \text{start prob for state I}$
- Emission probabilities for each symbol and state
 b_{ik} = P(s_k | q_i)

Looks Familiar?

- HMMs are like FSAs except:
 - Transitions and emissions are decoupled
 - The model first transitions to a state, then emits a symbol in that state
 - Transitions and emissions are probabilistic

Problems for HMM

Learning:

- How to estimate transition and emission probabilities
- Inference/Decoding:
 - How to find most probable state sequence for a given observation sequence
- Today:
 - Learning from a tagged corpus
- Next time:
 - Decoding + learning from raw text

Supervised Learning

Supervised learning:

- Learning from a tagged corpus
- Start probabilities:
 - Eliminate by introducing dummy state <start> with P(<start>) = 1
- Transition probabilities:
 - N-gram language model over tags
 - States represent context
 - First-order (bigram) model, state = tag unigram
 - Second-order (trigram) model, state = tag bigram

Transition Probabilities

- Compute tag n-gram counts from corpus
 - Bigram case:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$

- Use smoothing to handle unseen n-grams
 - Distribution less sparse than for word n-grams
 - Laplace smoothing works okay
 - Backoff and interpolation are common

Emission Probabilities

Compute word-tag counts from corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

- Complications:
 - Known words with unknown tags?
 - Unknown words
 - Suffix probabilities work well for many languages
 - Additional features: capitalization, numbers, etc.

Summary

- Part-of-speech tagging
 - Basic step in many analysis pipelines
 - Different tagsets for different languages and applications
- Methods
 - Rule-based systems (CG, TBL)
 - Statistical sequence models (HMM, ...)
- State of the art:
 - 96-97% accuracy for English newswire text