
Basic Text Analysis

N-Gram Models

Slides adapted from Jurafsky & Martin, Speech and Language Processing

2

Word Prediction

§  Guess the next word:
 I notice three guys standing on the ???

§  There are many sources of knowledge that can
be used to inform this task, including arbitrary
world knowledge.

§  But it turns out that you can do pretty well by
simply looking at the preceding words and
keeping track of some fairly simple counts.

3

Word Prediction

§  We can formalize this task using N-gram models.
§  N-grams are token sequences of length N.
§  Our earlier example contains these 2-grams:

(I notice)
(notice three)
(three guys)
(guys standing)
(standing on)
(on the)

§  Given knowledge of N-gram counts, we can guess
likely next words in a sequence.

4

Applications

§  It turns out that being able to predict the next
word (or any linguistic unit) in a sequence is an
extremely useful thing to be able to do.

§  It lies at the core of the following applications:
§  Automatic speech recognition
§  Handwriting and character recognition
§  Spelling correction
§  Part-of-speech tagging
§  Machine translation
§  And many more

5

Counting

§  Simple counting lies at the core of any
probabilistic approach. So let’s first take a look
at what we’re counting.
He stepped out into the hall, was delighted to
encounter a water brother.
§  13 tokens, 15 if we include “,” and “.” as separate

tokens.
§  Assuming we include the comma and period, how

many bigrams are there?

6

Counting: Types and Tokens

§  How about
They picnicked by the pool, then lay back on the grass
and looked at the stars.

§  18 tokens (again counting punctuation)
§  But we might also note that “the” is used 3

times, so there are only 16 unique types (as
opposed to tokens).

§  In going forward, we’ll have occasion to focus
on counting both types and tokens of both
words and N-grams.

7

Counting: Wordforms

§  Should “cats” and “cat” count as the same
when we’re counting?

§  How about “geese” and “goose”?
§  Remember:

§  Lemma: a set of lexical forms having the base form
and major part of speech

§  Wordform: fully inflected surface form

§  Again, we’ll have occasion to count both
lemmas and wordforms

8

Counting: Corpora
§  So what happens when we look at large bodies

of text instead of single utterances?

§  Brown et al (1992) large corpus of English text
§  583 million wordform tokens
§  293,181 wordform types

§  Google
§  Crawl of 1,024,908,267,229 English tokens
§  13,588,391 wordform types

§  That seems like a lot of types... After all, even large dictionaries of English
have only around 500k types. Why so many here?

• Numbers
• Misspellings
• Names
• Acronyms
• etc

9

Language Modeling
§  Back to word prediction
§  We can model the word prediction task as the

prediction of the conditional probability of a
word given previous words in the sequence:
P(wn|w1,w2…wn-1)

§  We’ll call a statistical model that can do this a
Language Model

10

Language Modeling

§  How might we go about calculating such a
conditional probability?
§  One way is to use the definition of conditional

probabilities and look for counts.

§  Remember:
P(the | its water is so transparent that) =

P(its water is so transparent that the)
P(its water is so transparent that)

Count(its water is so transparent that the)
Count(its water is so transparent that)

§  By definition that’s
P(its water is so transparent that the)
 P(its water is so transparent that)
We can get each of those from counts in a large corpus.

≈

11

Not That Simple?

§  According to Google those counts are 5/9.
§  Unfortunately ... 2 of those were to these slides ... So

maybe it’s really 3/7?
§  In any case, that’s not terribly convincing due to the

small numbers involved.

§  Unfortunately, for most sequences and corpora
we won’t get good estimates from this method.
§  What we’re likely to get is 0. Or worse 0/0.

§  Clearly, we’ll have to be a little more clever.
§  Let’s use the chain rule of probability
§  And a particularly useful independence assumption.

12

The Chain Rule

P(its water was so transparent) =

P(its) * P(water|its) * P(was|its water) *
P(so|its water was) * P(transparent|its water was so)

13

Independence Assumption
§  Make the simplifying assumption:

P(lizard|the,other,day,I,was,walking,along,and,saw,a) =
P(lizard|a)

§  Or maybe:
P(lizard|the,other,day,I,was,walking,along,and,saw,a) =
P(lizard|saw,a)

§  That is, assume the probability in question is
independent of its earlier history

14

Independence Assumption
§  This particular kind of independence assumption

is called a Markov assumption after the Russian
mathematician Andrei Markov.

15

§  So for each component in the product use
the approximation (assuming a prefix of N):

§  Bigram version:

€

P(wn |w1
n−1) ≈ P(wn |wn−N +1

n−1)

Markov Assumption

€

P(wn |w1
n−1) ≈ P(wn |wn−1)

16

Estimating Bigram
Probabilities

§  The Maximum Likelihood Estimate (MLE)

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

17

An Example
§  <s> I am Sam </s>
§  <s> Sam I am </s>
§  <s> I do not like green eggs and ham </s>

18

Maximum Likelihood Estimates

§  Maximum likelihood estimate:
§  The estimate that maximizes the likelihood of the

training set T given the model M
§  Suppose the word “Chinese” occurs 400 times in

a corpus of a million words (Brown corpus)
§  What is the probability that a random word from

another text from the same distribution is “Chinese”?
§  MLE estimate is 400/1000000 = .004
§  This may be a bad estimate for some other corpus.
§  But it is the estimate that makes it most likely that
“Chinese” will occur 400 times in a 1M word corpus.

19

Berkeley Restaurant Project

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

20

Bigram Counts

§  Corpus of 9222 sentences
§  For example: “I want” occurred 827 times

21

Bigram Probabilities

§  Divide bigram counts by prefix unigram
counts to get probabilities.

22

Sentence Probabilities

P(<s> I want english food </s>) =

P(i|<s>) * P(want|I) * P(english|want) *
P(food|english) * P(</s>|food) * = 0.000031

23

Kinds of Knowledge

P(english | want) = .0011
P(chinese | want) = .0065
P(to | want) = .66
P(eat | to) = .28
P(food | to) = 0
P(want | spend) = 0
P (i | <s>) = .25

§  As crude as they are, N-gram probabilities
capture a range of interesting facts about
language.

World knowledge

Syntax

Discourse

24

Shannon’s Method

§  Assigning probabilities to sentences is all well
and good, but it’s not terribly illuminating.

§  A more interesting task is to use the model to
generate random sentences that are like the
sentences from which the model was derived.

§  Generally attributed to Claude Shannon.

25

Shannon’s Method

§  Start:
Sample a random bigram (<s>, w) according P(w | <s>)

§  Repeat:
Sample a random bigram (w, x) according to P(x | w),
the prefix w matches the suffix of the previous bigram

§  Until:
We randomly choose a (y, </s>)

26

Shakespeare

27

Shakespeare as a Corpus

§  Statistics:
§  Tokens N = 884,647
§  Types V = 29,066
§  Possible bigram types = V2 = 844,832,356
§  Actual bigram types ≈ 300,000

§  Note:
§  99.96% of the possible bigrams were never seen

(have zero entries in the table)
§  This is the biggest problem in language modeling.

§  Quadrigrams are worse:
§  What's coming out looks like Shakespeare because it

is Shakespeare

28

The Wall Street Journal is Not
Shakespeare

29

Evaluation
§  How do we know if our models are any good?

§  In particular, how do we know if one model is better
than another?

§  Shannon’s game gives us an intuition.
§  The generated texts from the higher order models

sure look better. That is, they look more like the text
the model was obtained from.

§  But what does that mean? Can we make that notion
operational?

30

Evaluation
§  Fit parameters of our model on a training set.
§  Look at the performance on some new data.

§  This is exactly what happens in the real world; we
want to know how our model performs on data we
haven’t seen

§  So use a test set. A dataset different than our
training set, but drawn from the same source.

§  Then we need an evaluation metric to tell us
how well our model is doing on the test set.
§  One such metric is perplexity (more later)

31

Unknown Words
§  But once we start looking at test data, we’ll run

into words that we haven’t seen before
§  With an Open Vocabulary task

§  Create an unknown word token <UNK>
§  Training of <UNK> probabilities

§  Create a fixed lexicon L, of size V, from a dictionary or a
subset of the training set

§  At text normalization phase, any training word not in L
changed to <UNK>

§  Now we count that like a normal word

§  At test time
§  Use <UNK> counts for any word not in training

32

Perplexity
§  Perplexity is the probability of

the test set (assigned by the
language model), normalized
by the number of words:

§  Chain rule:

§  For bigrams:

§  Minimizing perplexity = maximizing probability

§  The best language model is the one that best
predicts an unseen test set

Dan!Jurafsky!

Perplexity!

Perplexity!is!the!inverse!probability!of!
the!test!set,!normalized!by!the!number!
of!words:!

!!!Chain!rule:!
!
!!For!bigrams:!

Minimizing!perplexity!is!the!same!as!maximizing!probability!

The!best!language!model!is!one!that!best!predicts!an!unseen!test!set!
•  Gives!the!highest!P(sentence)!

PP(W) = P(w1w2...wN)
!

1
N

 =
1

P(w1w2...wN)
N

Dan!Jurafsky!

Perplexity!

Perplexity!is!the!inverse!probability!of!
the!test!set,!normalized!by!the!number!
of!words:!

!!!Chain!rule:!
!
!!For!bigrams:!

Minimizing!perplexity!is!the!same!as!maximizing!probability!

The!best!language!model!is!one!that!best!predicts!an!unseen!test!set!
•  Gives!the!highest!P(sentence)!

PP(W) = P(w1w2...wN)
!

1
N

 =
1

P(w1w2...wN)
N

Dan!Jurafsky!

Perplexity!

Perplexity!is!the!inverse!probability!of!
the!test!set,!normalized!by!the!number!
of!words:!

!!!Chain!rule:!
!
!!For!bigrams:!

Minimizing!perplexity!is!the!same!as!maximizing!probability!

The!best!language!model!is!one!that!best!predicts!an!unseen!test!set!
•  Gives!the!highest!P(sentence)!

PP(W) = P(w1w2...wN)
!

1
N

 =
1

P(w1w2...wN)
N

33

Lower perplexity – better model

§  Wall Street Journal:
§  Training 38 million words
§  Test 1.5 million words

34

Extrinsic Evaluation
§  The best evaluation is often extrinsic:

§  Put the model into an application (for example, ASR)
§  Evaluate performance of the application with model A
§  Put model B into the application and evaluate
§  Compare performance of the application with A and B

§  However:
§  This is really time-consuming
§  Can take days to run an experiment
§  In practice, we often fall back on intrinsic evaluation,

for example, using perplexity

35

Zero Counts

§  Back to Shakespeare
§  Recall that Shakespeare produced 300,000 bigram

types out of V2= 844 million possible bigrams
§  So, 99.96% of the possible bigrams were never seen

(have zero entries in the table)
§  Does that mean that any sentence that contains one

of those bigrams should have a probability of 0?

36

Zero Counts
§  Some of those zeros are really zeros

§  Things that really can’t or shouldn’t happen.

§  On the other hand, some of them are just rare events.
§  If the training corpus had been a little bigger they would have

had a count (probably a count of 1!).

§  Zipf’s Law (long tail phenomenon):
§  A small number of events occur with high frequency
§  A large number of events occur with low frequency
§  You can quickly collect statistics on the high frequency events
§  You might have to wait an arbitrarily long time to get valid

statistics on low frequency events
§  Data sparseness:

§  Our estimates are sparse! We have no counts at all for the
vast bulk of things we want to estimate!

37

Laplace Smoothing

§  Also called add-one smoothing
§  Just add one to all the counts!
§  Very simple

§  MLE estimate:

§  Laplace estimate:

§  Reconstructed counts:

38

Laplace-Smoothed Bigram
Counts

39

Laplace-Smoothed Bigram
Probabilities

40

Reconstituted Counts

41

Big Change to the Counts!
§  C(want to) went from 608 to 238!
§  P(to|want) from .66 to .26!
§  Discount d = c*/c

§  d for “chinese food” =.10!!! A 10x reduction
§  So in general, Laplace is a blunt instrument
§  Could use more fine-grained method (add-k)

§  But Laplace smoothing is not used for N-grams, as we
have much better methods

§  Despite its flaws Laplace (add-k) is however still used to
smooth other probabilistic models in NLP, especially
§  For pilot studies
§  In domains where the number of zeros isn’t so huge.

42

Better Smoothing

§  Intuition used by many smoothing algorithms
§  Good-Turing
§  Kneser-Ney
§  Witten-Bell

§  Use the count of things we’ve seen once to help
estimate the count of things we’ve never seen

43

Good-Turing
§  Imagine you are fishing

There are 8 species: carp, perch, pike, trout, salmon, eel, catfish, bass

§  You have caught
10 carp, 3 perch, 2 pike, 1 trout, 1 salmon, 1 eel = 18 fish

§  How likely is it that the next catch is a new species?
3/18

§  Assuming so, how likely is it that next species is trout?
Must be less than 1/18

Slide adapted from Josh Goodman

§  Notation: Nx is the frequency-of-frequency-x
N10 = 1 (carp)
N1 = 3 (trout, salmon, eel)

§  To estimate total number of unseen species
Use number of species (words) we’ve seen once
P(unseen) = N1/N = 3/18

§  All other counts are adjusted (down) to give
probabilities for unseen

44

Good-Turing

Slide adapted from Josh Goodman

45

GT Fish Example

46

Bigram Frequencies of
Frequencies and
GT Re-estimates

§  In practice, assume large counts (c > k) are reliable:

§  That complicates c*, making it:

§  Also: we assume singleton counts c = 1 are unreliable,
so treat N-grams with count of 1 as if they were c = 0

§  Also: need the Nk to be non-zero, so we need to smooth
(interpolate) Nk counts before computing c* from them

47

Complications

48

Backoff and Interpolation

§  Another really useful source of knowledge
§  If we are estimating trigram P(z|xy)
§  But count(xyz) is zero
§  Use info from bigram p(z|y)
§ Or even unigram p(z)

§  How to combine this trigram, bigram,
unigram info in a valid fashion?

49

Backoff vs. Interpolation

§  Backoff: use trigram if you have it,
otherwise bigram, otherwise unigram

§  Interpolation: mix all three

50

Interpolation

§  Simple interpolation

§  Lambdas conditional on context:

51

How to Set the Lambdas?

§  Use a held-out, or development, corpus
§  Choose lambdas which maximize the probability of

some held-out data
§  Fix the N-gram probabilities
§  Then search for lambda values that when plugged into

previous equation give best probability for held-out set
§  Can use EM to do this search (more later)

52

Katz Backoff

53

Why discounts P* and alpha?

§  MLE probabilities sum to 1

§  What if we use MLE probabilities but back off to
lower order model when MLE probability is zero?

§  We would then be adding extra probability mass
§  And total probability would be greater than 1

54

Bigram Probabilities with
Backoff and GT

55

Backoff + Discounting
§  How much probability to assign to all zero

trigrams?
§  Use GT or other discounting method to tell us

§  How to divide that probability mass among
different contexts?
§  Use the N-1-gram estimates to tell us (backoff)

§  What do we do with unigram words not seen in
training?
§  Out of Vocabulary = OOV words

56

OOV words: <UNK> word
§  Out of Vocabulary = OOV words
§  We don’t use GT smoothing for these

§  GT assumes we know the number of unseen events
§  Instead: create an unknown word token <UNK>

§  Training of <UNK> probabilities
§  Create a fixed lexicon L of size V
§  At text normalization phase, any training word not in L

changed to <UNK>
§  Now we train its probabilities like a normal word

§  At decoding time
§  If text input: Use <UNK> probabilities for any word not in

training

57

Practical Issues

§  We do everything in log space
§  Avoid underflow
§  Adding is faster than multiplying

