Basic Text Analysis

N-Gram Models

Slides adapted from Jurafsky & Martin, Speech and Language Processing

Word Prediction

= Guess the next word:
I notice three guys standing on the 222

= There are many sources of knowledge that can
be used to inform this task, including arbitrary
world knowledge.

= But it turns out that you can do pretty well by
simply looking at the preceding words and
keeping track of some fairly simple counts.

Word Prediction

We can formalize this task using N-gram models.
N-grams are token sequences of length .

Our earlier example contains these 2-grams:
(I notice)

(notice three)

(three guys)

(guys standing)

(standing on)

(on the)

Given knowledge of N-gram counts, we can guess
likely next words in a sequence.

Applications

= [t turns out that being able to predict the next
word (or any linguistic unit) in a sequence is an
extremely useful thing to be able to do.

= [t lies at the core of the following applications:
= Automatic speech recognition
= Handwriting and character recognition
= Spelling correction
= Part-of-speech tagging
= Machine translation
= And many more

Counting

= Simple counting lies at the core of any
probabilistic approach. So let’ s first take a look
at what we’ re counting.

He stepped out into the hall, was delighted to
encounter a water brother.

= 13 tokens, 15 if we include *,” and “.” as separate
tokens.

= Assuming we include the comma and period, how
many bigrams are there?

Counting: Types and Tokens

= How about

They picnicked by the pool, then lay back on the grass
and looked at the stars.

= 18 tokens (again counting punctuation)

= But we might also note that “the” is used 3
times, so there are only 16 unique types (as
opposed to tokens).

= In going forward, we’ll have occasion to focus

on counting both types and tokens of both
words and N-grams.

Counting: Wordforms

Should “cats” and “cat” count as the same
when we’ re counting?

How about “geese” and “goose”?

Remember:

= Lemma: a set of lexical forms having the base form
and major part of speech

= Wordform: fully inflected surface form

Again, we’ Il have occasion to count both
lemmas and wordforms

e
Counting: Corpora

= So what happens when we look at large bodies
of text instead of single utterances?

= Brown et al (1992) large corpus of English text

= 583 million wordform tokens
= 293,181 wordform types

= Google
= Crawl of 1,024,908,267,229 English tokens

= 13,588,391 wordform types

= That seems like a lot of types... After all, even large dictionaries of English
have only around 500k types. Why so many here?

eNumbers
eMisspellings
eNames
eAcronyms
ectc

e
Language Modeling

= Back to word prediction

= We can model the word prediction task as the
prediction of the conditional probability of a
word given previous words in the sequence:

P(W,|wWy,W,.. W,)
= We'll call a statistical model that can do this a
Language Model

Language Modeling

= How might we go about calculating such a
conditional probability?
= One way is to use the definition of conditional
probabilities and look for counts.
= Remember:
P(the | its water is so transparent that) =

P(its water is so transparent that the)
P(its water is so transparent that)

Count(its water is so transparent that the)
Count(its water is so transparent that)

10

Not That Simple?

= According to Google those counts are 5/9.

= Unfortunately ... 2 of those were to these slides ... So
maybe it’ s really 3/7?

= Tn any case, that’ s not terribly convincing due to the
small numbers involved.

= Unfortunately, for most sequences and corpora
we won’ t get good estimates from this method.

= What we’ re likely to get is 0. Or worse 0/0.

= Clearly, we'll have to be a little more clever.
= Let’ s use the chain rule of probability
= And a particularly useful independence assumption.

1

THe EHaln RuIe

= P(wy)P(wa|w1)P(w3 |w%) . .P(w,.,\w'l'_l)

n
[TPOwewi™)
k=1

ey
5
|

P(its water was so transparent) =

P(its) * P(water|its) * P(was|its water) *
P(solits water was) * P(transparent|its water was so)

12

Independence Assumption

= Make the simplifying assumption:
P(lizard|the,other,day,I,was,walking,along,and,saw,a) =
P(lizard|a)

= Or maybe:
P(lizard|the,other,day,I,was,walking,along,and,saw,a) =
P(lizard|saw,a)

= That is, assume the probability in question is
independent of its earlier history

13

S
Independence Assumption

= This particular kind of independence assumption
is called a Markov assumption after the Russian
mathematician Andrei Markov.

14

S
Markov Assumption

= So for each component in the product use
the approximation (assuming a prefix of N):

P(wnlw]~ N~ P(Wnan Nl

= Bigram version:

Pw, Iw/™ =~ Pw, lw)

15

Esﬂmaﬂng Bl'gram

Probabilities
= The Maximum Likelihood Estimate (MLE)

count(w,_,,w.
Plw, lw,_)= (Wips W)

count(w,_,)

16

W

= <s>]am Sam </s>
= <s>SamIam </s>
= <s>] do not like green eggs and ham </s>

17

Maximum Likelihood Estimates

= Maximum likelihood estimate:

» The estimate that maximizes the likelihood of the
training set T given the model M

= Suppose the word “Chinese” occurs 400 times in
a corpus of a million words (Brown corpus)

= What is the probability that a random word from
another text from the same distribution is “Chinese”?

= MLE estimate is 400/1000000 = .004
= This may be a bad estimate for some other corpus.

= But it is the estimate that makes it most likely that
“Chinese” will occur 400 times in a 1M word corpus.

18

Berkeley Restaurant Project

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’ m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available
i”m looking for a good place to eat breakfast

when is caffe venezia open during the day

19

Bigram Counts

= Corpus of 9222 sentences

= For example: “I want” occurred 827 times

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 151 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

20

Bigram Probabilities

= Divide bigram counts by prefix unigram
counts to get probabilities.

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food [lunch | spend

1 0.002 103310 0.0036 | 0 0 0 0.00079
want 0.0022 | 0O 0.66 | 0.0011| 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.0017 1 0.28 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.00271 0 0.021 0.002710.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | 0
food 0.014 |0 0.014 |0 0.00092 | 0.0037 | O 0
lunch || 0.0059 |0 0 0 0 0.00291 0 0
spend || 0.0036 | O 0.0036| 0 0 0 0 0

21

Sentence Probabilities

P(<s> I want english food </s>) =

P(i|<s>) * P(want|I) * P(english|want) *
P(food|english) * P(</s>|food) * = 0.000031

22

Kinds of Knowledge

= As crude as they are, N-gram probabilities
capture a range of interesting facts about

language.

P(english | want) = .0011
P(chinese | want) = .0065

P(to | want) = .66]
P(eat | to) = .28
P(food | to) =0

} World knowledge

- P

P(want | spend) = 0 |

P(i| <s>) = .25

23

Shannon’s Method

= Assigning probabilities to sentences is all well
and good, but it’ s not terribly illuminating.

= A more interesting task is to use the model to
generate random sentences that are /ike the
sentences from which the model was derived.

= Generally attributed to Claude Shannon.

24

Shannon’s Method

= Start:
Sample a random bigram (<s>, w) according P(w | <s>)
= Repeat:

Sample a random bigram (w, x) according to P(x | w),
the prefix w matches the suffix of the previous bigram

= Until:
We randomly choose a (y, </s>)

25

Shakespeare

Unigram

e To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have

e Every enter now severally so, let

¢ Hill he late speaks; or! a more to leg less first you enter

e Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near;
vile like

Bigram

e What means, sir. I confess she? then all sorts, he 1s trim, captain.

eWhy dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry.
Live king. Follow.

eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the
first gentleman?

eEnter Menenius, if it so many good direction found’st thou art a strong upon com-
mand of fear not a liberal largess given away, Falstaff! Exeunt

Trigram

e Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

e This shall forbid it should be branded, if renown made it empty.

e Indeed the duke; and had a very good friend.

e Fly, and will rid me these news of price. Therefore the sadness of parting, as they
say, 'tis done.

Quadrigram

e King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

e Will you not tell me who I am?

e It cannot be but so.

e Indeed the short and the long. Marry, 'tis a noble Lepidus.

26

Shakespeare as a Corpus

= Statistics:
= Tokens N = 884,647
= Types V = 29,066
= Possible bigram types = V2 = 844,832,356
= Actual bigram types = 300,000

= Note:

= 99.96% of the possible bigrams were never seen
(have zero entries in the table)

= This is the biggest problem in language modeling.

= Quadrigrams are worse:

= What's coming out looks like Shakespeare because it
IS Shakespeare

27

I“E Wa" gEI‘EEE !ourna' IS NOE

Shakespeare

unigram: Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

bigram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her

trigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

28

Evaluation

= How do we know if our models are any good?

= In particular, how do we know if one model is better
than another?

= Shannon’ s game gives us an intuition.

= The generated texts from the higher order models
sure look better. That is, they look more like the text
the model was obtained from.

= But what does that mean? Can we make that notion
operational?

29

Evaluation

Fit parameters of our model on a training set.

Look at the performance on some new data.

= This is exactly what happens in the real world; we
want to know how our model performs on data we

haven’t seen

So use a test set. A dataset different than our
training set, but drawn from the same source.

Then we need an evaluation metric to tell us
how well our model is doing on the test set.

= One such metric is perplexity (more later)

30

S
Unknown Words

= But once we start looking at test data, we'll run
into words that we haven't seen before

= With an Open Vocabulary task
= Create an unknown word token <UNK>

= Training of <UNK> probabilities

= Create a fixed lexicon L, of size V, from a dictionary or a
subset of the training set

= At text normalization phase, any training word not in L
changed to <UNK>

= Now we count that like a normal word

= At test time
= Use <UNK> counts for any word not in training

31

e
Perplexity

Pww,..wy) N

= Perplexity is the probability of ppaw)
the test set (assigned by the
language model), normalized \/ 1
N

by the number of words: = AP,y

:12

= Chain rule: — 1{]

- P(w,|w1 Wi—1)

N

= For bigrams: Pp(W) = 1{]HP(W.|IW-_1)

i=1

= Minimizing perplexity = maximizing probability
= The best language model is the one that best
predicts an unseen test set

32

e
Lower perplexity — better model

= Wall Street Journal:
= Training 38 million words
= Test 1.5 million words

N-gram Order || Unigram | Bigram | Trigram
Perplexity 962 170 109

33

Extrinsic Evaluation

= The best evaluation is often extrinsic:
= Put the model into an application (for example, ASR)
= Evaluate performance of the application with model A
= Put model B into the application and evaluate
= Compare performance of the application with A and B

= However:
= This is really time-consuming
= Can take days to run an experiment

= In practice, we often fall back on intrinsic evaluation,
for example, using perplexity

34

Zero Counts

= Back to Shakespeare

= Recall that Shakespeare produced 300,000 bigram
types out of V2= 844 million possible bigrams

= S0, 99.96% of the possible bigrams were never seen
(have zero entries in the table)

= Does that mean that any sentence that contains one
of those bigrams should have a probability of 0?

35

Zero Counts

Some of those zeros are really zeros
= Things that really can’ t or shouldn’ t happen.

On the other hand, some of them are just rare events.
= If the training corpus had been a little bigger they would have
had a count (probably a count of 1!).
Zipf’ s Law (long tail phenomenon):
= A small number of events occur with high frequency
= A large number of events occur with low frequency
= You can quickly collect statistics on the high frequency events
= You might have to wait an arbitrarily long time to get valid
statistics on low frequency events
Data sparseness:

= Qur estimates are sparse! We have no counts at all for the
vast bulk of things we want to estimate!

36

S
Laplace Smoothing

= Also called add-one smoothing
= Just add one to all the counts!
= Very simple

» MLE estimate: P(wi) =%

Pl antace (W) = 1
= Laplace estimate: * Laplacel™) = N5

N
N+V

sk

= Reconstructed counts: ¢; =(c;i+ 1)

37

Wap ace-Smoothed Bigram

Counts
1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

38

Wap ace-Smoothed Bigram

Probabilities
C(Wn—lwn) +1

P (Wn ‘Wn—l) —

C (Wn—1) +V

1 want to eat chinese food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025(0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056] 0.0011 0.00056| 0.00056
spend 0.0012 0.00058| 0.0012 0.00058 | 0.00058| 0.00058| 0.00058| 0.00058

39

Reconstlltutea Eou nts

[C(Wn.—lwn) + 1] X C(Wn—l)

c” (Wn—lwn) —

C(Wn—l) +V

1 want to eat chinese | food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

40

Big Change to the Counts!

C(want to) went from 608 to 238!
P(to|want) from .66 to .26!

Discount d = c*/c
= d for “chinese food” =.10!! A 10x reduction
= So in general, Laplace is a blunt instrument
= Could use more fine-grained method (add-k)

But Laplace smoothing is not used for N-grams, as we
have much better methods

Despite its flaws Laplace (add-k) is however still used to
smooth other probabilistic models in NLP, especially

= For pilot studies
= In domains where the number of zeros isn't so huge.

41

e
Better Smoothing

= Intuition used by many smoothing algorithms
= Good-Turing
= Kneser-Ney
= Witten-Bell

= Use the count of things we've seen once to help
estimate the count of things we've never seen

42

S
Good-Turing

Imagine you are fishing
There are 8 species: carp, perch, pike, trout, salmon, eel, catfish, bass

= You have caught
10 carp, 3 perch, 2 pike, 1 trout, 1 salmon, 1 eel = 18 fish

= How likely is it that the next catch is a new species?
3/18

= Assuming so, how likely is it that next species is trout?
Must be less than 1/18

Slide adapted from Josh Goodman e

e
Good-Turing

= Notation: N, is the frequency-of-frequency-x
N, = 1 (carp)
N, = 3 (trout, salmon, eel)

= To estimate total number of unseen species
Use number of species (words) we've seen once
P(unseen) = N;/N = 3/18

= All other counts are adjusted (down) to give

probabilities for unseen Ny

N,

¢ =(c+1)

Slide adapted from Josh Goodman a4

"~ GTFish Example

unseen (bass or catfish)

frout

|

0

1
I3

c*(trout)= 2 x

=2 X

.67

N
Pgrlunseen) = 54 = %

pgr(trout) = % =

45

- Bigram Frequencies of

Frequencies and
GT Re-estimates

AP Newswire Berkeley Restaurant—

¢ (MLE) N. ¢ (GT) c (MLE) N, " (GT)

0 74,671,100,000 0.0000270 0 2,081,496 0.002553
1 2,018,046 0.446 1 5315 0.533960
2 449,721 1.26 2 1419 1.357294
3 188,933 2.24 3 642 2.373832
4 105,668 3.24 4 381 4.081365
5 68,379 4.22 5 311 3.781350
6 48,190 5.19 6 196 4.500000

46

S
Complications

= In practice, assume large counts (c > k) are reliable:
¢ =c forc>k

= That complicates c*, making it:

(c+ 1) Neyi _ (K1) Ney

* N1
c = o (k+1)Nk+1 , forl <c<k.

Nj

= Also: we assume singleton counts c = 1 are unreliable,
so treat N-grams with count of 1 as if they werec =0

= Also: need the N, to be non-zero, so we need to smooth
(interpolate) N, counts before computing c* from them

47

Backoff and Interpolation

= Another really useful source of knowledge
= If we are estimating trigram P(z|xy)
= But count(xyz) is zero
= Use info from bigram p(z|y)
= Or even unigram p(z)

= How to combine this trigram, bigram,
unigram info in a valid fashion?

48

e
Backoff vs. Interpolation

= Backoff: use trigram if you have it,
otherwise bigram, otherwise unigram

= Interpolation: mix all three

49

W

= Simple interpolation

p(wnlwn—lwn—2) — klP(Wn|Wn—an—2)

+AP(wy|wp_1) 2h=1
‘|’7\«3P(Wn) l

» L ambdas conditional on context:

p(wn|wn—2wn—l) =M (WZ:%)P(wn|wn—2wn—l)
+7\'2(WZ:%)P(Wn|wn—l)
+Aa(W)y23)P(wn)

50

How to Set the Lambdas?

= Use a held-out, or development, corpus

= Choose lambdas which maximize the probability of
some held-out data
= Fix the N-gram probabilities

= Then search for lambda values that when plugged into
previous equation give best probability for held-out set

= Can use EM to do this search (more later)

51

» 1 P* (Wn|W2:11v+1)’ if C(Wy_ny1) >0
katz(WalWhZny1) = O‘(Wz:}w 1) Piatz(Wn Wi +2)s otherwise.
P*(z|x,y), if C(x,y,z) >0
Pty (Zxy) = < o, y)Prat, (2]Y), else if C(x,y) >0
P*(z), otherwise.
P*(zly), if C(y,z) >0
P katz (ZLV) = .
a(v)P*(z), otherwise.

52

Why discounts P* and alpha?

= MLE probabilities sum to 1

ZP(W,- wiwg) =1

= What if we use MLE probabilities but back off to

lower order model when MLE probability is zero?
= We would then be adding extra probability mass
= And total probability would be greater than 1

53

Backoff and GT

1 want to eat chinese food lunch spend
1 0.0014 0.326 0.00248 0.00355 0.000205 0.0017 0.00073 0.000489
want 0.00134 0.00152 0.656 0.000483 0.00455 0.00455 0.00384 0.000483
to 0.000512 0.00152 0.00165 0.284 0.000512 0.0017 0.00175 0.0873
eat 0.00101 0.00152 0.00166 0.00189 0.0214 0.00166 0.0563 0.000585
chinese 0.00283 0.00152 0.00248 0.00189 0.000205 0.519 0.00283 0.000585
food 0.0137 0.00152 0.0137 0.00189 0.000409 0.00366 0.00073 0.000585
lunch 0.00363 0.00152 0.00248 0.00189 0.000205 0.00131 0.00073 0.000585
spend 0.00161 0.00152 0.00161 0.00189 0.000205 0.0017 0.00073 0.000585

54

Backoff + Discounting

= How much probability to assign to all zero
trigrams?
= Use GT or other discounting method to tell us
= How to divide that probability mass among
different contexts?
= Use the N-1-gram estimates to tell us (backoff)

= What do we do with unigram words not seen in
training?
= Qut of Vocabulary = OOV words

95

OO0V words: <UNK> word

= Out of Vocabulary = OOV words

= We don’ t use GT smoothing for these
= GT assumes we know the number of unseen events

» Instead: create an unknown word token <UNK>

= Training of <UNK> probabilities
= Create a fixed lexicon L of size V

= At text normalization phase, any training word not in L
changed to <UNK>

= Now we train its probabilities like a normal word
= At decoding time

= If text input: Use <UNK> probabilities for any word not in
training

56

!racllcal !SSUES

= \We do everything in log space
= Avoid underflow
= Adding is faster than multiplying

P1 X p2 X p3 x ps = exp(log p1 + log p> +log p3 +log p4)

o7

