
Basic Text Analysis

Hidden Markov Models

Joakim Nivre

Uppsala University
Department of Linguistics and Philology

joakim.nivre@lingfil.uu.se

Basic Text Analysis 1(33)

Hidden Markov Models

I Markov models are probabilistic sequence
models used for problems such as:
1. Speech recognition
2. Spell checking
3. Part-of-speech tagging
4. Named entity recognition

I A Markov model runs through a sequence of states emitting
observable signals

I If the state sequence cannot be determined from the
observation sequence, the model is said to be hidden

Basic Text Analysis 2(33)

Hidden Markov Models

I A Markov model consists of five elements:
1. A finite set of states Q = {q1, . . . , q|Q|}
2. A finite signal alphabet Σ = {s1, . . . , s |Σ|}
3. Initial probabilities P(q) defining the probability of starting in

state q (for every q ∈ Q)
4. Transition probabilities P(q | q′) defining the probability of

going from state q′ to state q (for every (q, q′) ∈ Q2)
5. Emission probabilities P(s | q) defining the probability of

emitting symbol s in state q (for every (s, q) ∈ Σ× Q)

I Remember: If we add a start state, P(q) = P(q | start)

Basic Text Analysis 3(33)

Markov Assumptions

I State transitions are assumed to be independent of everything
except the current state:

P(q1, . . . , qn) =
n∏

i=1

P(qi | qi−1)

I Signal emissions are assumed to be independent of everything
except the current state:

P(q1, . . . , qn, s1, . . . , sn) = P(q1, . . . , qn)
n∏

i=1

P(si | qi)

I NB: subscripts on states and signals refer to sequence positions

Basic Text Analysis 4(33)

Tagging with an HMM

I Modeling assumptions:
1. States represent tag n-grams
2. Signals represent words

I Probability model (first-order, unigram states):

P(w1, . . . ,wn, t1, . . . , tn) =
n∏

i=1

P(wi |ti)P(ti |ti−1)

I In an nth-order model, states represent tag n-grams
I This gives an n+1-gram language model over tags

I Ambiguity:
I The same word (signal) generated by different tags (states)
I Language is ambiguous ⇔ Markov model is hidden

Basic Text Analysis 5(33)

A Simple First-Order HMM for Tagging

Basic Text Analysis 6(33)

Problems for HMMs

I Decoding = finding the optimal state sequence

argmax
q1,...,qn

P(q1, . . . , qn, s1, . . . , sn)

I Learning = estimating the model parameters

P̂(qj |qi) ∀qj , qi P̂(s|q) ∀s, q

Basic Text Analysis 7(33)

Decoding

I Given observation sequence s1, . . . , sn, compute:

argmax
q1,...,qn

P(q1, . . . , qn, s1, . . . , sn)

I Brute force solution:
I For every possible state sequence q1, . . . , qn

I Compute P(q1, . . . , qn, s1, . . . , sn) =
∏n

i=1 P(qi |qi−1)P(si |qi)
I Pick the sequence with highest probability

I Anything wrong with this?

Basic Text Analysis 8(33)

Time Complexity

I How long does it take to compute a solution?
I Actual running time depends on many factors
I Time complexity is about how time grows with input size

I Analysis of brute-force algorithm:
I Computing P(q1, . . . , qn, s1, . . . , sn) requires 2n multiplications
I There are |Q|n possible state sequences of length n
I If each multiplication takes c time, T (n) = c · 2n · |Q|n

I In the long run, only the fastest growing factor matters:

T (n) = O(|Q|n)

Basic Text Analysis 9(33)

Basic Text Analysis 10(33)

Dynamic Programming

I What is the problem really?
I The number |Ω|n of sequences grows exponentially
I But the sequences have overlapping subsequences
I The brute-force algorithm does a lot of unnecessary work

I Key: solution of size n contains solution of size n−1
argmaxq1,...,qn P(q1, . . . , qn, s1, . . . , sn) =

argmaxqn argmaxq1,...,qn−1 P(q1, . . . , qn−1, s1, . . . , sn−1)P(qn|qn−1)P(sn|sn)

I We can use dynamic programming
I Create a table for storing partial results
I Make sure that partial results are available when needed
I Avoid recomputing the same result more than once

Basic Text Analysis 11(33)

The Trellis

q|Q| · · ·
· · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
· · ·

q3 · · ·
q2 · · ·
q1 · · ·

1 2 3 4 5 6 7 8 9 10 n

I For HMMs the table is known as the trellis:
I Every rows corresponds to a state q ∈ Q
I Every column corresponds to a position i (1 ≤ i ≤ n)
I The cell qi represents the best way to reach q at i

Basic Text Analysis 12(33)

The Viterbi Algorithm
q|Q| · · ·

· · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

· · ·
q3 · · ·
q2 · · ·
q1 · · ·

1 2 3 4 5 6 7 8 9 10 n

I Goal:
I Find best cell in column n = best way to reach any state at n

I Algorithm:
I Fill the table from left to right, column by column
I For each cell qi :

I Add q to all best paths in column i − 1
I Keep the one with highest probability

I We need one trellis for probabilities (A) and one for paths (B)

Basic Text Analysis 13(33)

The Viterbi Algorithm
q|Q| · · ·

· · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

· · ·
q3 · · ·
q2 · · ·
q1 · · ·

1 2 3 4 5 6 7 8 9 10 n

for i = 1 to n
for q = q1 to q|Q|

for q′ = q1 to q|Q|

p ← A[q′, i − 1]P(q|q′)P(si |q)
if p > A[q, i] then

A[q, i]← p
B[q, i]← q′

q∗ ← maxq A[q, n]
return B[q∗, n],B[B[q∗, n], n − 1], . . .

Basic Text Analysis 14(33)

Viterbi Example

Basic Text Analysis 15(33)

Viterbi Example

Basic Text Analysis 15(33)

Viterbi Example

Basic Text Analysis 15(33)

Viterbi Example

Basic Text Analysis 15(33)

Time Complexity

I Analysis of Viterbi algorithm:
I Filling one cell requires 2|Q| multiplications
I There are |Q| cells in each column
I There are n columns in the trellis
I If each multiplication takes c time, T (n) = 2n|Q|2

I Worst-case complexity:

T (n) = O(n|Q|2)

Basic Text Analysis 16(33)

Basic Text Analysis 17(33)

Learning

I Supervised learning:
I Given a tagged training corpus, we can estimate parameters

using (smoothed) relative frequencies
I This maximizes the joint likelihood of states and signals
I Transition probabilities can be smoothed like n-gram models
I Emission probabilities need special tricks for unknown words

I Weakly supervised learning:
I Given a lexicon and an untagged training corpus, we can use

Expectation-Maximization to estimate parameters
I This attempts to maximize the marginal likelihood of the

signals (because states are hidden/unobserved)

Basic Text Analysis 18(33)

Maximum Likelihood Estimation

I With labeled data D = {(x1, y1), . . . , (xn, yn)}, we set parameters
θ to maximize the joint likelihood of input and output:

argmax
θ

n∏
1=i

Pθ(yi)Pθ(xi |yi)

I With unlabeled data D = {x1, . . . , xn}, we can instead set
parameters θ to maximize the marginal likelihood of the input:

argmax
θ

n∏
1=i

∑
y∈ΩY

Pθ(y)Pθ(xi |y)

I In this case, Y is a hidden variable that is marginalized out

Basic Text Analysis 19(33)

Expectation-Maximization

I Joint MLE is easy – just use relative frequencies
I Marginal MLE is hard – no closed form solution

argmax
θ

n∏
i=1

∑
y∈ΩY

Pθ(y)Pθ(xi |y) = ?

I What can we do?
I Use numerical approximation methods
I Most common approach: Expectation-Maximization (EM)

Basic Text Analysis 20(33)

Expectation-Maximization

I Basic observations:
I If we know fN(x , y), we can find the MLE θ.
I If we know fN(x) and the MLE θ, we can derive fN(x , y).
I If Pθ(y |x) = p and fN(x) = n, then fN(x , y) = np.

I Basic idea behind EM:
1. Start by guessing θ
2. Compute expected counts E [fN(x , y)] = Pθ(y |x)fN(x)
3. Find MLE θ given expectation E [fN(x , y)]
4. Repeat steps 2 and 3 until convergence

Basic Text Analysis 21(33)

Supervised Learning

Lexicon: eat V Corpus: <s> eat/V fish/N </s>
fish N V <s> drink/V beer/N </s>
drink N V
beer N V

Freqs N V eat fish drink beer
<s> 0 2
N 0 0 0 1 0 1
V 2 0 1 0 1 0

Probs N V eat fish drink beer
<s> 0.0 1.0
N 0.5 0.5 0.0 0.5 0.0 0.5
V 1.0 0.0 0.5 0.0 0.5 0.0

Basic Text Analysis 22(33)

EM: First Guess
Lexicon: eat V Corpus: <s> eat fish </s>

fish N V <s> drink beer </s>
drink N V
beer N V

Freqs N V eat fish drink beer
<s> ? ?
N ? ? ? ? ? ?
V ? ? ? ? ? ?

Probs N V eat fish drink beer
<s> 0.5 0.5
N 0.5 0.5 0.0 0.33 0.33 0.33
V 0.5 0.5 0.33 0.33 0.33 0.0

Basic Text Analysis 23(33)

EM: First E-Step

Lexicon: eat V Corpus: <s> eat/V fish/N </s> : 0.5
fish N V <s> eat/V fish/V </s> : 0.5
drink N V <s> drink/N beer/N </s> : 0.5
beer N V <s> drink/V beer/N </s> : 0.5

Freqs N V eat fish drink beer
<s> ? ?
N ? ? ? ? ? ?
V ? ? ? ? ? ?

Probs N V eat fish drink beer
<s> 0.5 0.5
N 0.5 0.5 0.0 0.33 0.33 0.33
V 0.5 0.5 0.33 0.33 0.33 0.0

Basic Text Analysis 24(33)

EM: First E-Step

Lexicon: eat V Corpus: <s> eat/V fish/N </s> : 0.5
fish N V <s> eat/V fish/V </s> : 0.5
drink N V <s> drink/N beer/N </s> : 0.5
beer N V <s> drink/V beer/N </s> : 0.5

Freqs N V eat fish drink beer
<s> 0.5 1.5
N 0.5 0 0 0.5 0.5 1
V 1 0.5 1 0.5 0.5 0

Probs N V eat fish drink beer
<s> 0.5 0.5
N 0.5 0.5 0.0 0.33 0.33 0.33
V 0.5 0.5 0.33 0.33 0.33 0.0

Basic Text Analysis 24(33)

EM: First M-Step

Lexicon: eat V Corpus: <s> eat fish </s>
fish N V <s> drink beer </s>
drink N V
beer N V

Freqs N V eat fish drink beer
<s> 0.5 1.5
N 0.5 0 0 0.5 0.5 1
V 1 0.5 1 0.5 0.5 0

Probs N V eat fish drink beer
<s> 0.25 0.75
N 1.0 0.0 0.0 0.25 0.25 0.5
V 0.67 0.33 0.5 0.25 0.25 0.0

Basic Text Analysis 25(33)

EM: Second E-Step

Lexicon: eat V Corpus: <s> eat/V fish/N </s> : 0.86
fish N V <s> eat/V fish/V </s> : 0.14
drink N V <s> drink/N beer/N </s> : 0.33
beer N V <s> drink/V beer/N </s> : 0.67

Freqs N V eat fish drink beer
<s> 0.5 1.5
N 0.5 0 0 0.5 0.5 1
V 1 0.5 1 0.5 0.5 0

Probs N V eat fish drink beer
<s> 0.25 0.75
N 1.0 0.0 0.0 0.25 0.25 0.5
V 0.67 0.33 0.5 0.25 0.25 0.0

Basic Text Analysis 26(33)

EM: Second E-Step

Lexicon: eat V Corpus: <s> eat/V fish/N </s> : 0.86
fish N V <s> eat/V fish/V </s> : 0.14
drink N V <s> drink/N beer/N </s> : 0.33
beer N V <s> drink/V beer/N </s> : 0.67

Freqs N V eat fish drink beer
<s> 0.33 1.67
N 0.33 0 0 0.86 0.33 1
V 1.19 0.14 1 0.14 0.67 0

Probs N V eat fish drink beer
<s> 0.25 0.75
N 1.0 0.0 0.0 0.25 0.25 0.5
V 0.67 0.33 0.5 0.25 0.25 0.0

Basic Text Analysis 26(33)

EM: Second M-Step

Lexicon: eat V Corpus: <s> eat fish </s>
fish N V <s> drink beer </s>
drink N V
beer N V

Freqs N V eat fish drink beer
<s> 0.33 1.67
N 0.33 0 0 0.86 0.33 1
V 1.19 0.14 1 0.14 0.67 0

Probs N V eat fish drink beer
<s> 0.17 0.83
N 1.0 0.0 0.0 0.39 0.15 0.46
V 0.89 0.11 0.55 0.08 0.37 0.0

Basic Text Analysis 27(33)

EM: Third E-Step

Lexicon: eat V Corpus: <s> eat/V fish/N </s> : 0.98
fish N V <s> eat/V fish/V </s> : 0.02
drink N V <s> drink/N beer/N </s> : 0.09
beer N V <s> drink/V beer/N </s> : 0.91

Freqs N V eat fish drink beer
<s> 0.33 1.67
N 0.33 0 0 0.86 0.33 1
V 1.19 0.14 1 0.14 0.67 0

Probs N V eat fish drink beer
<s> 0.17 0.83
N 1.0 0.0 0.0 0.39 0.15 0.46
V 0.89 0.11 0.55 0.08 0.37 0.0

Basic Text Analysis 28(33)

EM: Third E-Step

Lexicon: eat V Corpus: <s> eat/V fish/N </s> : 0.98
fish N V <s> eat/V fish/V </s> : 0.02
drink N V <s> drink/N beer/N </s> : 0.09
beer N V <s> drink/V beer/N </s> : 0.91

Freqs N V eat fish drink beer
<s> 0.09 1.91
N 0.09 0 0 0.98 0.09 1
V 1.89 0.02 1 0.02 0.91 0

Probs N V eat fish drink beer
<s> 0.17 0.83
N 1.0 0.0 0.0 0.39 0.15 0.46
V 0.89 0.11 0.55 0.08 0.37 0.0

Basic Text Analysis 29(33)

EM: Third M-Step

Lexicon: eat V Corpus: <s> eat fish </s>
fish N V <s> drink beer </s>
drink N V
beer N V

Freqs N V eat fish drink beer
<s> 0.09 1.91
N 0.09 0 0 0.98 0.09 1
V 1.89 0.02 1 0.02 0.91 0

Probs N V eat fish drink beer
<s> 0.05 0.95
N 1.0 0.0 0.0 0.47 0.04 0.48
V 0.99 0.01 0.52 0.01 0.47 0.0

Basic Text Analysis 30(33)

Convergence

I EM is guaranteed to converge to a local maximum of the
likelihood function

I A local maximum may not be the global maximum
I Even if we reach the global maximum, it may not be the same

as for the supervised model (Why?)

I In general, EM is quite sensitive to initialization

Basic Text Analysis 31(33)

EM for Hidden Markov Models

I Computing expectations:

E [fN(q, q′)] =
∑n

i=1 P(s1, . . . , sn, qi = q, qi−1 = q′)

E [fN(s, q)] =
∑n

i=1 P(s1, . . . , si−1, si = s, . . . , sn, qi = q)

I Difficulty:
I Summing over all possible state sequences
I The number |Ω|n of sequences grows exponentially

I Sounds familiar?
I We can use dynamic programming again
I The forward-backward algorithm

Basic Text Analysis 32(33)

Summary

I Markov models are probabilistic sequence models used for
part-of-speech tagging and many similar problems

I They can be trained from labeled data using relative frequency
estimation or from unlabeled data and a lexicon using EM

I Thanks to the Markov assumptions, computation can be made
efficient using dynamic programming:

I Most probable state sequence – Viterbi
I Probability of signal sequence – Forward or Backward
I Expectations for EM – Forward-Backward

Basic Text Analysis 33(33)

