

Basic Text Analysis

Hidden Markov Models

Joakim Nivre

Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se

Hidden Markov Models

- Markov models are probabilistic sequence models used for problems such as:
 - 1. Speech recognition
 - 2. Spell checking
 - 3. Part-of-speech tagging
 - 4. Named entity recognition
- A Markov model runs through a sequence of states emitting observable signals
- If the state sequence cannot be determined from the observation sequence, the model is said to be hidden

Hidden Markov Models

- A Markov model consists of five elements:
 - 1. A finite set of states $Q = \{q^1, \dots, q^{|Q|}\}$
 - 2. A finite signal alphabet $\Sigma = \{s^1, \dots, s^{|\Sigma|}\}$
 - 3. Initial probabilities P(q) defining the probability of starting in state q (for every $q \in Q$)
 - 4. Transition probabilities $P(q \mid q')$ defining the probability of going from state q' to state q (for every $(q, q') \in Q^2$)
 - 5. Emission probabilities $P(s \mid q)$ defining the probability of emitting symbol s in state q (for every $(s, q) \in \Sigma \times Q$)
- Remember: If we add a start state, P(q) = P(q | start)

Markov Assumptions

State transitions are assumed to be independent of everything except the current state:

$$P(q_1,\ldots,q_n)=\prod_{i=1}^n P(q_i\mid q_{i-1})$$

Signal emissions are assumed to be independent of everything except the current state:

$$P(q_1,\ldots,q_n,s_1,\ldots,s_n)=P(q_1,\ldots,q_n)\prod_{i=1}^n P(s_i\mid q_i)$$

NB: subscripts on states and signals refer to sequence positions

Tagging with an HMM

- Modeling assumptions:
 - 1. States represent tag *n*-grams
 - 2. Signals represent words
- Probability model (first-order, unigram states):

$$P(w_1,...,w_n,t_1,...,t_n) = \prod_{i=1}^n P(w_i|t_i)P(t_i|t_{i-1})$$

- ▶ In an *n*th-order model, states represent tag *n*-grams
- This gives an n+1-gram language model over tags
- Ambiguity:
 - ▶ The same word (signal) generated by different tags (states)
 - ► Language is ambiguous ⇔ Markov model is hidden

A Simple First-Order HMM for Tagging

Problems for HMMs

Decoding = finding the optimal state sequence

$$\operatorname*{argmax}_{q_1,\ldots,q_n} P(q_1,\ldots,q_n,s_1,\ldots,s_n)$$

Learning = estimating the model parameters

$$\hat{P}(q_j|q_i) \quad orall q_j, q_i \qquad \qquad \hat{P}(s|q) \quad orall s, q$$

Decoding

• Given observation sequence s_1, \ldots, s_n , compute:

```
\operatorname{argmax}_{q_1,\ldots,q_n} P(q_1,\ldots,q_n,s_1,\ldots,s_n)
```

- Brute force solution:
 - For every possible state sequence q_1, \ldots, q_n
 - Compute $P(q_1, ..., q_n, s_1, ..., s_n) = \prod_{i=1}^n P(q_i | q_{i-1}) P(s_i | q_i)$
 - Pick the sequence with highest probability
- Anything wrong with this?

Time Complexity

- How long does it take to compute a solution?
 - Actual running time depends on many factors
 - Time complexity is about how time grows with input size
- Analysis of brute-force algorithm:
 - Computing $P(q_1, \ldots, q_n, s_1, \ldots, s_n)$ requires 2n multiplications
 - There are $|Q|^n$ possible state sequences of length n
 - If each multiplication takes c time, $T(n) = c \cdot 2n \cdot |Q|^n$
- ► In the long run, only the fastest growing factor matters:

 $T(n) = O(|Q|^n)$

Dynamic Programming

- What is the problem really?
 - The number $|\Omega|^n$ of sequences grows exponentially
 - But the sequences have overlapping subsequences
 - The brute-force algorithm does a lot of unnecessary work
- Key: solution of size n contains solution of size n-1

 $\begin{aligned} &\operatorname{argmax}_{q_1,\ldots,q_n} P(q_1,\ldots,q_n,s_1,\ldots,s_n) = \\ &\operatorname{argmax}_{q_n} \operatorname{argmax}_{q_1,\ldots,q_{n-1}} P(q_1,\ldots,q_{n-1},s_1,\ldots,s_{n-1}) P(q_n|q_{n-1}) P(s_n|s_n) \end{aligned}$

- We can use dynamic programming
 - Create a table for storing partial results
 - Make sure that partial results are available when needed
 - Avoid recomputing the same result more than once

The Trellis

For HMMs the table is known as the trellis:

- Every rows corresponds to a state $q \in Q$
- Every column corresponds to a position i $(1 \le i \le n)$
- The cell q_i represents the best way to reach q at i

The Viterbi Algorithm

► Goal:

- Find best cell in column n = best way to reach any state at n
- Algorithm:
 - Fill the table from left to right, column by column
 - For each cell q_i:
 - Add q to all best paths in column i 1
 - Keep the one with highest probability
- ▶ We need one trellis for probabilities (A) and one for paths (B)

The Viterbi Algorithm

for
$$i = 1$$
 to n
for $q = q^1$ to $q^{|Q|}$
for $q' = q^1$ to $q^{|Q|}$
 $p \leftarrow A[q', i - 1]P(q|q')P(s_i|q)$
if $p > A[q, i]$ then
 $A[q, i] \leftarrow p$
 $B[q, i] \leftarrow q'$
 $q^* \leftarrow \max_q A[q, n]$
return $B[q^*, n], B[B[q^*, n], n - 1], \dots$

Time Complexity

Analysis of Viterbi algorithm:

- Filling one cell requires 2|Q| multiplications
- There are |Q| cells in each column
- There are *n* columns in the trellis
- If each multiplication takes c time, $T(n) = 2n|Q|^2$

Worst-case complexity:

$$T(n) = O(n|Q|^2)$$

Learning

- Supervised learning:
 - Given a tagged training corpus, we can estimate parameters using (smoothed) relative frequencies
 - This maximizes the joint likelihood of states and signals
 - ► Transition probabilities can be smoothed like *n*-gram models
 - Emission probabilities need special tricks for unknown words
- Weakly supervised learning:
 - Given a lexicon and an untagged training corpus, we can use Expectation-Maximization to estimate parameters
 - This attempts to maximize the marginal likelihood of the signals (because states are hidden/unobserved)

Maximum Likelihood Estimation

• With labeled data $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$, we set parameters θ to maximize the joint likelihood of input and output:

$$\underset{\theta}{\operatorname{argmax}} \prod_{1=i}^{n} P_{\theta}(y_i) P_{\theta}(x_i | y_i)$$

With unlabeled data D = {x₁,...,x_n}, we can instead set parameters θ to maximize the marginal likelihood of the input:

$$\underset{\theta}{\operatorname{argmax}} \prod_{1=i}^{n} \sum_{y \in \Omega_{Y}} P_{\theta}(y) P_{\theta}(x_{i}|y)$$

▶ In this case, Y is a hidden variable that is marginalized out

Expectation-Maximization

- Joint MLE is easy just use relative frequencies
- Marginal MLE is hard no closed form solution

$$\operatorname{argmax}_{\theta} \prod_{i=1}^{n} \sum_{y \in \Omega_{Y}} P_{\theta}(y) P_{\theta}(x_{i}|y) = ?$$

- What can we do?
 - Use numerical approximation methods
 - Most common approach: Expectation-Maximization (EM)

Expectation-Maximization

- Basic observations:
 - If we know $f_N(x, y)$, we can find the MLE θ .
 - If we know $f_N(x)$ and the MLE θ , we can derive $f_N(x, y)$.
 - If $P_{\theta}(y|x) = p$ and $f_N(x) = n$, then $f_N(x, y) = np$.
- Basic idea behind EM:
 - 1. Start by guessing θ
 - 2. Compute expected counts $E[f_N(x, y)] = P_{\theta}(y|x)f_N(x)$
 - 3. Find MLE θ given expectation $E[f_N(x, y)]$
 - 4. Repeat steps 2 and 3 until convergence

Supervised Learning

Lexicon:	eat fish	V N V	Corpus:	<s> eat/V fish/N </s> <s> drink/V beer/N </s>
	drink	NV		
	beer	IN V		

Freqs	N	V	eat	fish	drink	beer
<s></s>	0	2				
Ν	0	0	0	1	0	1
V	2	0	1	0	1	0
	I		I			
Probs	N	V	eat	fish	drink	beer
<s></s>	0.0	1.0				
Ν	05	0 5	00	05	0.0	05
	0.5	0.5	0.0	0.5	0.0	0.5

EM: First Guess

Lexicon:	eat	V	Corpus:	<s> eat fish $<$ /s>
	fish	ΝV		<s> drink beer </s>
	drink	ΝV		
	beer	ΝV		

Freqs	N	V	eat	fish	drink	beer
<s></s>	?	?				
Ν	?	?	?	?	?	?
V	?	?	?	?	?	?
	I		I			
Probs	N	V	eat	fish	drink	beer
Probs <s></s>	N 0.5	V 0.5	eat	fish	drink	beer
Probs <s> N</s>	N 0.5 0.5	V 0.5 0.5	eat 0.0	fish 0.33	drink 0.33	beer 0.33

EM: First E-Step

Lexicon:	eat fish	V N V	Corpus:	<s> eat/V fish/N $<$ /s> : 0.5 <s> eat/V fish/V $<$ /s> : 0.5
	drink beer	N V N V		<pre><s> drink/N beer/N </s> : 0.5 <s> drink/V beer/N </s> : 0.5</pre>

Freqs	N	V	eat	fish	drink	beer
<s></s>	?	?				
Ν	?	?	?	?	?	?
V	?	?	?	?	?	?
	1		I			
Probs	N	V	eat	fish	drink	beer
Probs <s></s>	N 0.5	V 0.5	eat	fish	drink	beer
Probs <s> N</s>	N 0.5 0.5	V 0.5 0.5	eat 0.0	fish 0.33	drink 0.33	beer 0.33

EM: First E-Step

Lexicon:	eat fish	V N V	Corpus:	$\langle s \rangle$ eat/V fish/N $\langle s \rangle$: 0.5 $\langle s \rangle$ eat/V fish/V $\langle s \rangle$: 0.5
	drink beer	N V N V		<s $<$ drink/N beer/N $<$ /s $> : 0.5<$ s $>$ drink/V beer/N $<$ /s $> : 0.5$

Freqs	N	V	eat	fish	drink	beer
<s></s>	0.5	1.5				
Ν	0.5	0	0	0.5	0.5	1
V	1	0.5	1	0.5	0.5	0
Probs	N	V	eat	fish	drink	beer
Probs <s></s>	N 0.5	V 0.5	eat	fish	drink	beer
Probs <s> N</s>	N 0.5 0.5	V 0.5 0.5	eat 0.0	fish 0.33	drink 0.33	beer 0.33

EM: First M-Step

Lexicon:	eat	V	Corpus:	<s> eat fish $<$ /s>
	fish	ΝV		<s> drink beer </s>
	drink	ΝV		,
	beer	ΝV		

Freqs	N	V	eat	fish	drink	beer
<s></s>	0.5	1.5				
Ν	0.5	0	0	0.5	0.5	1
V	1	0.5	1	0.5	0.5	0
	1					
Probs	N	V	eat	fish	drink	beer
Probs <s></s>	N 0.25	V 0.75	eat	fish	drink	beer
Probs <s> N</s>	N 0.25 1.0	V 0.75 0.0	eat 0.0	fish 0.25	drink 0.25	beer 0.5

EM: Second E-Step

Lexicon:	eat fish drink beer	V N V N V	Corpus:	<pre><s> eat/V fish/N </s> : 0.86 <s> eat/V fish/V </s> : 0.14 <s> drink/N beer/N </s> : 0.33 <s> drink/V beer/N </s> : 0.67</pre>
	beer	ΝV		<s> drink/V beer/N </s> : 0.67

Freqs	N	V	eat	fish	drink	beer
<s></s>	0.5	1.5				
Ν	0.5	0	0	0.5	0.5	1
V	1	0.5	1	0.5	0.5	0
	I					
Probs	N	V	ont	fich	drink	hoor
	1 1 1	v	Cal	11511	unnik	Deel
<s></s>	0.25	0.75	eat	11511	unink	beer
<s> N</s>	0.25	0.75 0.0	0.0	0.25	0.25	0.5

EM: Second E-Step

Lexicon:	eat fish drink	V N V N V	Corpus:	<s> eat/V fish/N </s> : 0.86 <s> eat/V fish/V </s> : 0.14 <s> drink/N beer/N </s> : 0.33
	drink	NV		$\langle s \rangle$ drink/N beer/N $\langle s \rangle$: 0.33
	beer	ΝV		<s> drink/V beer/N $<$ /s> : 0.67

Freqs	N	V	eat	fish	drink	beer
<s></s>	0.33	1.67				
Ν	0.33	0	0	0.86	0.33	1
V	1.19	0.14	1	0.14	0.67	0
Probs	N	V	eat	fish	drink	beer
Probs <s></s>	N 0.25	V 0.75	eat	fish	drink	beer
Probs <s> N</s>	N 0.25 1.0	V 0.75 0.0	eat 0.0	fish 0.25	drink 0.25	beer 0.5

EM: Second M-Step

Lexicon:	eat	V	Corpus:	<s> eat fish </s>
	fish	ΝV		<s> drink beer </s>
	drink	ΝV		,
	beer	ΝV		

Freqs	N	V	eat	fish	drink	beer
<s></s>	0.33	1.67				
Ν	0.33	0	0	0.86	0.33	1
V	1.19	0.14	1	0.14	0.67	0
	I		I			
Probs	N	V	eat	fish	drink	beer
Probs <s></s>	N 0.17	V 0.83	eat	fish	drink	beer
Probs <s> N</s>	N 0.17 1.0	V 0.83 0.0	eat 0.0	fish 0.39	drink 0.15	beer 0.46

EM: Third E-Step

Lexicon:	eat fish drink	V N V N V	Corpus:	<s> eat/V fish/N </s> : 0.98 <s> eat/V fish/V </s> : 0.02 <s> drink/N beer/N </s> : 0.09
	drink	IN V		$\langle s \rangle$ drink/N beer/N $\langle s \rangle$: 0.09
	beer	NV		<s> drink/V beer/N $<$ /s> : 0.91

Freqs	N	V	eat	fish	drink	beer
<s></s>	0.33	1.67				
Ν	0.33	0	0	0.86	0.33	1
V	1.19	0.14	1	0.14	0.67	0
	1					
Probs	N	V	eat	fish	drink	beer
Probs <s></s>	N 0.17	V 0.83	eat	fish	drink	beer
Probs <s> N</s>	N 0.17 1.0	V 0.83 0.0	eat 0.0	fish 0.39	drink 0.15	beer 0.46
Probs <s> N V</s>	N 0.17 1.0 0.89	V 0.83 0.0 0.11	eat 0.0 0.55	fish 0.39 0.08	drink 0.15 0.37	beer 0.46 0.0

EM: Third E-Step

Lexicon:	eat fish drink	V N V N V	Corpus:	<s> eat/V fish/N </s> : 0.98 <s> eat/V fish/V </s> : 0.02 <s> drink/N beer/N </s> : 0.09
	drink	IN V		$\langle s \rangle$ drink/N beer/N $\langle s \rangle$: 0.09
	beer	NV		<s> drink/V beer/N $<$ /s> : 0.91

Freqs	N	V	eat	fish	drink	beer
<s></s>	0.09	1.91				
Ν	0.09	0	0	0.98	0.09	1
V	1.89	0.02	1	0.02	0.91	0
	1					
Probs	N	V	eat	fish	drink	beer
Probs <s></s>	N 0.17	V 0.83	eat	fish	drink	beer
Probs <s> N</s>	N 0.17 1.0	V 0.83 0.0	eat 0.0	fish 0.39	drink 0.15	beer 0.46
Probs <s> N V</s>	N 0.17 1.0 0.89	V 0.83 0.0 0.11	eat 0.0 0.55	fish 0.39 0.08	drink 0.15 0.37	beer 0.46 0.0

EM: Third M-Step

Lexicon:	eat	V	Corpus:	<s> eat fish $<$ /s>
	fish	ΝV		<s> drink beer </s>
	drink	ΝV		,
	beer	ΝV		

Freqs	N	V	eat	fish	drink	beer
<s></s>	0.09	1.91				
Ν	0.09	0	0	0.98	0.09	1
V	1.89	0.02	1	0.02	0.91	0
Probs	N	V	eat	fish	drink	beer
<s></s>	0.05	0.95				
Ν	1.0	0.0	0.0	0.47	0.04	0.48
V	0.99	0.01	0.52	0.01	0.47	0.0
N V Probs <s> N V</s>	0.09 1.89 N 0.05 1.0 0.99	0 0.02 V 0.95 0.0 0.01	0 1 eat 0.0 0.52	0.98 0.02 fish 0.47 0.01	0.09 0.91 drink 0.04 0.47	1 0 bee 0.48 0.0

Convergence

- EM is guaranteed to converge to a local maximum of the likelihood function
 - A local maximum may not be the global maximum
 - Even if we reach the global maximum, it may not be the same as for the supervised model (Why?)
- In general, EM is quite sensitive to initialization

EM for Hidden Markov Models

Computing expectations:

$$\begin{aligned} & E[f_N(q,q')] = \sum_{i=1}^n P(s_1,\ldots,s_n,q_i=q,q_{i-1}=q') \\ & E[f_N(s,q)] = \sum_{i=1}^n P(s_1,\ldots,s_{i-1},s_i=s,\ldots,s_n,q_i=q) \end{aligned}$$

- Difficulty:
 - Summing over all possible state sequences
 - The number $|\Omega|^n$ of sequences grows exponentially
- Sounds familiar?
 - We can use dynamic programming again
 - The forward-backward algorithm

Summary

- Markov models are probabilistic sequence models used for part-of-speech tagging and many similar problems
- They can be trained from labeled data using relative frequency estimation or from unlabeled data and a lexicon using EM
- Thanks to the Markov assumptions, computation can be made efficient using dynamic programming:
 - Most probable state sequence Viterbi
 - Probability of signal sequence Forward or Backward
 - Expectations for EM Forward-Backward